MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dewdrops on the genome : regulation of gene expression by biomolecular phase separation

Author(s)
Shrinivas, Krishna,Ph. D.Massachusetts Institute of Technology.
Thumbnail
Download1241096021-MIT.pdf (86.05Mb)
Alternative title
Regulation of gene expression by biomolecular phase separation
Other Contributors
Massachusetts Institute of Technology. Department of Chemical Engineering.
Advisor
Arup K. Chakraborty.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Human development and physiology depend on the coordinated function of thousands of cell types - for example, neurons, immune cells, and skin cells. Each cell-type contains an identical copy of the genetic material yet performs specialized and diverse functions, in large part, due to the selective expression of particular coding DNA-elements (genes) into RNA. Mutations or dysregulation in control of gene expression underlie many diseased states, including cancer and neurodegenerative disorders. Non-coding DNA elements called enhancers orchestrate the complex biochemical pathways that lead to precise activation of cell-type specific genes. Decades of advances in molecular biology have identified many of the key proteins and their interactions in these pathways.
 
Yet, how dozens of proteins and their complex network of interactions are organized in space and time by enhancers to robustly relay regulatory information to their target genes remains one of the central puzzles of transcriptional control. In this thesis, I will leverage approaches from statistical physics, simulation, and informatics, in synergy with experimentalists, to gain mechanistic insights into gene control through the lens of biomolecular phase transitions. Proposal: I will introduce recent evidence that proteins and nucleic acids with certain features phase separate into two liquid phases, like oil from water, to compartmentalize cellular pathways. Employing a simple physical model, I will propose the phase separation of the transcriptional machinery explains established and recently observed puzzles underlying a class of enhancer elements called super-enhancers.
 
Subsequently, I will describe studies performed in collaboration with the Young and Sharp labs that provide direct experimental evidence of transcriptional condensates model in vivo. Mechanism: I then will describe our efforts to identify the mechanisms contributing to the formation of transcriptional condensates. By combining molecular dynamics, informatics, and experimental assays, we identify specific features encoded in DNA that enable spatio-temporally localized formation of condensates. I will discuss implications on the origins of enhancer activity. Control: Here, we'll combine non-equilibrium models of phase separation, coacervate chemistry, and imaging data in cells to explore the dynamic control of transcription through it eventual outcome i.e. ATP-dependent synthesis of RNA. We propose a dual-feedback mechanism in which low levels of RNA synthesis promote condensate formation and higher levels trigger dissolution.
 
I will close by discussing the ramifications of our model on two enigmatic features of transcription - the pervasive synthesis and degradation of non-coding RNA and discrete and bursty dynamics of mRNA synthesis. I will conclude with a short summary and brief discussion on future work.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, September, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references.
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/130193
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.