Show simple item record

dc.contributor.advisorTomás Palacios and Jing Kong.en_US
dc.contributor.authorHempel, Marek,Ph. D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-03-22T17:17:53Z
dc.date.available2021-03-22T17:17:53Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/130201
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 198-209).en_US
dc.description.abstractOver the past 50 years, electronics has truly revolutionized our lives. Today, many everyday objects rely on electronic circuitry from gadgets such as wireless earbuds, smartphones and laptops to larger devices like household appliances and cars. However, the size range of electronic devices is still rather limited from the millimeter to meter scale. Being able to extend the reach of electronics from the size of a red blood cell to a skyscraper would enable new applications in many areas including energy production, entertainment, environmental sensing, and healthcare. 2D-materials, a new class of atomically thin materials with a variety of electric properties, are promising for such electronic systems with extreme dimension due to their flexibility and ease of integration. On the macroscopic side, electronics produced on thin films by roll-to-roll fabrication has great potential due to its high throughput and low production cost. Towards this end, this thesis explores the transfer of 2D-materials onto flexible EVA/PET substrates with hot roll lamination and electrochemical delamination using a custom designed roll-to-roll setup. The transfer process is characterized in detail and the lamination of multiple 2D material layers is demonstrated. As exemplary large-scale electronics application, a flexible solar cell with graphene transparent electrode is discussed. On the microscopic side, this thesis presents a 60x60 [mu]m² microsystem platform called synthetic cells or SynCells. This platform offers a variety of building blocks such as chemical sensors and transistors based on molybdenum disulfide, passive germanium timers, iron magnets for actuation, as well as gallium nitride LEDs and solar cells for communication and energy harvesting. Several system-level applications of SynCells are explored such as sensing in a microfluidic channel or spray-coating SynCells on arbitrary surfaces.en_US
dc.description.statementofresponsibilityby Marek Hempel.en_US
dc.format.extent209 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleTechnology and applications of 2D materials in micro- and macroscale electronicsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1241199239en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-03-22T17:17:19Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record