Show simple item record

dc.contributor.authorPéroux, Céline
dc.contributor.authorNelson, Dylan
dc.contributor.authorvan de Voort, Freeke
dc.contributor.authorPillepich, Annalisa
dc.contributor.authorMarinacci, Federico
dc.contributor.authorVogelsberger, Mark
dc.contributor.authorHernquist, Lars
dc.date.accessioned2021-04-01T20:57:45Z
dc.date.available2021-04-01T20:57:45Z
dc.date.issued2020-09
dc.date.submitted2020-09
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.urihttps://hdl.handle.net/1721.1/130343
dc.description.abstractWe use cosmological hydrodynamical simulations to examine the physical properties of the gas in the circumgalactic media (CGM) of star-forming galaxies as a function of angular orientation. We utilize TNG50 of the IllustrisTNG project, as well as the EAGLE simulation to show that observable properties of CGM gas correlate with azimuthal angle, defined as the galiocentric angle with respect to the central galaxy. Both simulations are in remarkable agreement in predicting a strong modulation of flow rate direction with azimuthal angle: inflow is more substantial along the galaxy major axis, while outflow is strongest along the minor axis. The absolute rates are noticeably larger for higher log (M[subscript star]/ M[subscript ⨀] ~10.5) stellar mass galaxies, up to an order of magnitude compared to [M with dot above] ≲1 M[subscript ⨀] yr[superscript −1]sr[superscript −1] for log(M[subscript star]/ M[subscript ⨀] ~ 9.5) objects. Notwithstanding the different numerical and physical models, both TNG50 and EAGLE predict that the average metallicity of the CGM is higher along the minor versus major axes of galaxies. The angular signal is robust across a wide range of galaxy stellar mass 8.5 < (M[subscript star]/ M[subscript ⨀]) < 10.5 at z < 1. This azimuthal dependence is particularly clear at larger impact parameters b ≥ 100 kpc. Our results present a global picture, whereby despite the numerous mixing processes, there is a clear angular dependence of the CGM metallicity. We make forecasts for future large survey programmes that will be able to compare against these expectations. Indeed, characterizing the kinematics, spatial distribution and metal content of CGM gas is key to a full understanding of the exchange of mass, metals, and energy between galaxies and their surrounding environments.en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/mnras/staa2888en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePredictions for the angular dependence of gas mass flow rate and metallicity in the circumgalactic mediumen_US
dc.typeArticleen_US
dc.identifier.citationPéroux, Céline et al. "Predictions for the angular dependence of gas mass flow rate and metallicity in the circumgalactic medium." Monthly Notices of the Royal Astronomical Society 499, 2 (September 2020): 2462–2473 © 2020 The Author(s)en_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalMonthly Notices of the Royal Astronomical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-11-17T19:12:31Z
dspace.orderedauthorsPéroux, C; Nelson, D; van de Voort, F; Pillepich, A; Marinacci, F; Vogelsberger, M; Hernquist, Len_US
dspace.date.submission2020-11-17T19:12:39Z
mit.journal.volume499en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record