MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Innovations present in the primate interneuron repertoire

Author(s)
Krienen, Fenna M.; Goldman, Melissa; Zhang, Qiangge; C. H. del Rosario, Ricardo; Florio, Marta; Machold, Robert; Saunders, Arpiar; Levandowski, Kirsten; Zaniewski, Heather; Schuman, Benjamin; Wu, Carolyn; Lutservitz, Alyssa; Mullally, Christopher D.; Reed, Nora; Bien, Elizabeth; Bortolin, Laura; Fernandez-Otero, Marian; Lin, Jessica D.; Wysoker, Alec; Nemesh, James; Kulp, David; Burns, Monika; Tkachev, Victor; Smith, Richard; Walsh, Christopher A.; Dimidschstein, Jordane; Rudy, Bernardo; S. Kean, Leslie; Berretta, Sabina; Fishell, Gord; Feng, Guoping; McCarroll, Steven A.; ... Show more Show less
Thumbnail
DownloadAccepted version (15.58Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Primates and rodents, which descended from a common ancestor around 90 million years ago , exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types—which were readily identified by their RNA-expression patterns—varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as ‘markers’ of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus—the ‘ivy cell’, which has neurogliaform characteristics—has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.
Date issued
2020-09
URI
https://hdl.handle.net/1721.1/130409
Department
McGovern Institute for Brain Research at MIT; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Nature
Publisher
Springer Science and Business Media LLC
Citation
Krienen, Fenna M. et al. "Innovations present in the primate interneuron repertoire." Nature 586, 7828 (September 2020): 262–269. © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0028-0836
1476-4687

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.