MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient homomorphically encrypted privacy-preserving automated biometric classification

Author(s)
Stein, David Benjamin.
Thumbnail
Download1249684928-MIT.pdf (2.305Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Daniela Rus.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis investigates whether biometric recognition can be performed on encrypted data without decrypting the data. Borrowing the concept from machine learning, we develop approaches that cache as much computation as possible to a pre-computation step, allowing for efficient, homomorphically encrypted biometric recognition. We demonstrate two algorithms: an improved version of the k-ishNN algorithm originally designed by Shaul et. al. in [1] and a homomorphically encrypted implementation of a SVM classifier. We provide experimental demonstrations of the accuracy and practical efficiency of both of these algorithms.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 87-96).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/130608
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.