MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single-molecule studies of the mechanism of eukaryotic helicase activation

Author(s)
De Jesús-Kim, Lorraine.
Thumbnail
Download1251767012-MIT.pdf (12.25Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Stephen P. Bell.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Eukaryotic DNA replication is a fundamental process that must occur accurately and only once per cell cycle. To ensure that origins only initiate once per cell cycle, the events of DNA replication initiation are temporally separated to different phases of the cell cycle. This regulation separates two key events that center the replicative DNA helicase Mcm2-7: helicase loading and helicase activation. During G1 phase, two inactive Mcm2-7 are loaded unto origin DNA. Upon entry into S phase, the association of multiple factors will promote helicase activity. Although loaded helicases mark all potential origins of replication, only the subset that is activated will promote origin initiation, and consequently DNA unwinding. After helicase activation the cell must duplicate its genome prior to chromosome segregation and cell division, making helicase activation the committed step of DNA replication. In my thesis, I describe a novel single-molecule reaction that recapitulates helicase activation in vitro with purified proteins. This single-molecule method allows real-time monitoring of protein associations and dissociations during helicase activation. Through these single-molecule reactions, I found that Cdc45 and GINS are recruited to Mcm2-7 in two stages. First, they are recruited to the unstructured N-terminal tails of Mcm2-7. DDK levels carefully control this initial recruitment, creating binding sites for these proteins that result in the formation of a previously unknown intermediate, which we call the Cdc45-tail-GINS (CtG) complex. Elevated DDK lead to increased numbers of CtG complexes formed on each Mcm2-7, which consequently increases the number of active Cdc45-Mcm2-7-GINS (CMG) helicases formed. This mechanism provides an explanation for the tight control of helicase activation by DDK activity during the cell cycle.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, February, 2021
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references.
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130660
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.