dc.contributor.advisor | Frédo Durand. | en_US |
dc.contributor.author | Ganeshan, Sanjay. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2021-05-24T19:51:57Z | |
dc.date.available | 2021-05-24T19:51:57Z | |
dc.date.copyright | 2021 | en_US |
dc.date.issued | 2021 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/130687 | |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021 | en_US |
dc.description | Cataloged from the official PDF of thesis. | en_US |
dc.description | Includes bibliographical references (pages 115-117). | en_US |
dc.description.abstract | Inverse rendering uses 2D images to infer the 3D scene parameters that produced the images. Unfortunately, inverse rendering is an ill-posed problem that is difficult to optimize. In this paper, we explore using a differentiable renderer to solve inverse rendering problems that are constrained to a single object with two unknowns: shape and texture. The inferred 3D scene is thus a single 3D model. We iteratively optimize an input "guess" 3D model to fit a set of input target images of the desired 3D object. The constrained inverse rendering problem remains ill-posed. So, we adapt, develop, and evaluate a number of deformation, regularization, and training techniques that allow the optimization to converge to visually appealing output 3D models. The system consumes a 3D triangle mesh and target images as input. It outputs a 3D mesh and its corresponding 2D texture image that can easily be consumed by other programs. The best results are achieved using a deep-mesh prior neural network, an Image Pyramid coarse-to-fine loss function, a Silhouette Loss function that is robust to inaccuracies in texture, three separate mesh regularizing loss functions - Laplacian, Flatness, and Non-Uniformity, and periodic refinement operations where the output mesh is upsampled and its manifold is recomputed. | en_US |
dc.description.statementofresponsibility | by Sanjay Ganeshan. | en_US |
dc.format.extent | 117 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Mesh regularization for multi-view shape reconstruction via inverse graphics | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1251779679 | en_US |
dc.description.collection | M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
dspace.imported | 2021-05-24T19:51:57Z | en_US |
mit.thesis.degree | Master | en_US |
mit.thesis.department | EECS | en_US |