MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-modal motion planning using composite pose graph optimization

Author(s)
Lao Beyer, Lukas C.
Thumbnail
Download1251800117-MIT.pdf (1.310Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Sertac Karaman.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This work presents a motion planning framework for multi-modal vehicle dynamics. An approach for transcribing cost function, vehicle dynamics, and state and control constraints into a sparse factor graph is introduced. By formulating the motion planning problem in pose graph form, the motion planning problem can be addressed using efficient optimization techniques, similar to those already widely applied in dual estimation problems, e.g., pose graph optimization for simultaneous localization and mapping (SLAM). Optimization of trajectories for vehicles under various dynamics models is demonstrated. The motion planner is able to optimize the location of mode transitions, and is guided by the pose graph optimization process to eliminate unnecessary mode transitions, enabling efficient discovery of optimized mode sequences from rough initial guesses. This functionality is demonstrated by using our planner to optimize multi-modal trajectories for vehicles such as an airplane which can both taxi on the ground or fly. Extensive experiments validate the use of the proposed motion planning framework in both simulation and real-life flight experiments using a vertical take-off and landing (VTOL) fixed-wing aircraft that can transition between hover and horizontal flight modes.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 30-31).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130697
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.