Show simple item record

dc.contributor.advisorRobert C. Berwick.en_US
dc.contributor.authorIndurkhya, Sagar.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-05-24T20:23:20Z
dc.date.available2021-05-24T20:23:20Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/130768
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, February, 2021en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 195-200).en_US
dc.description.abstractAmong the key questions that have guided research into the nature of human language for the past sixty years, two have been particularly salient: (1) What constitutes knowledge of language? and (2) How is that knowledge acquired? In particular, children using limited input examples, in effect small "sample size" complexity, all acquire their native language. This thesis attempts to answer these two questions by developing a novel, explicit, computational implementation of one contemporary approach to human language known as the Minimalist Program. It provides an answer to question (1) via the explicit axiomatization of a declaratively specified logical model of minimalist grammars, consisting of a set of formally specified principles and a single structure-building operation, along with a lexicon.en_US
dc.description.abstractBy rendering these axioms along with the lexicon as a set of constraints that are expressed using Satisfiability Modulo Theories (SMT), that must be simultaneously satisfied, the thesis demonstrates how to "solve for syntax": it uses an SMT-solver to computationally deduce the syntactic derivations that associate particular input sentences with their logical forms. In this sense, the thesis demonstrates that the proposed linguistic principles underlying such a system, including the contemporary notion of "economy conditions" in syntax are both coherent and consistent, and, importantly, that minimalist syntax can be placed within a classical "parsing as deduction" framework. This thesis then extends the system developed to address question (1) to provide an answer to question (2), by modeling acquisition as the construction of a succession of lexicons, starting from some initial, essentially empty lexicon, and then augmenting that lexicon.en_US
dc.description.abstractTo do this, it uses a set of (input sentence, skeletal "meaning") pairs intended to reflect minimally cognitively faithful constraints to infer what lexicon would bridge from input to quasi-meaning forms, again using an SMT-solver. Using this approach, the thesis explicitly demonstrates that a wide variety of syntactic sentence constructions in English can be acquired in this way, sufficient to account for the infinite generative capacity of at least one portion of English syntax. Importantly then, the thesis thus demonstrates that a contemporary minimalist syntactic system, with a single, fixed structure-building operation leaving only the lexicon to vary, can serve as the foundation for a contemporary approach to language acquisition. In this sense, the implementation serves as a concrete, computationally realized contemporary instantiation of the model of language acquisition set out in Aspects of the Theory of Syntax.en_US
dc.description.statementofresponsibilityby Sagar Indurkhya.en_US
dc.format.extent200 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSolving for syntaxen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1252061528en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-05-24T20:23:20Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record