Show simple item record

dc.contributor.advisorGuoping Feng.en_US
dc.contributor.authorLi, Liangen_US
dc.contributor.otherMassachusetts Institute of Technology. Institute for Data, Systems, and Society.en_US
dc.contributor.otherTechnology and Policy Program.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-05-24T20:24:00Z
dc.date.available2021-05-24T20:24:00Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/130791
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program, February, 2021en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, February, 2021en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 68-77).en_US
dc.description.abstractWe investigate the role of microglia in myelin development. Myelination is an essential process in early development that consists of the ensheathment of axons by myelin, which ensures rapid conduction of action potentials. Although myelination is predominantly driven by oligodendrocytes, the other glial cells, including microglia also contribute to this process. Microglia are resident immune cells in the central nervous system (CNS) and carry out important functions not only in injury and disease but also in homeostatic conditions. While the role of microglia in myelination has been explored by previous studies, little is known about the precise mechanism. Recently, a distinct microglia subset characterized by high expression of Spp1, Gpnmb, and Igf1 was found in white-matter regions in the early post natal brain but not at other time points. First, we developed a novel constitutive Cre mouse line, Fcrls-Cre, using the CRISPR-Cas9 system to target all subsets of microglia, including the white matter-associated microglia. Second, we focused on a signaling pathway triggered by ligand IgG and the gamma chain of its receptor, FcRg, and investigated their roles in the development of myelin. Our study hopes to provide a valuable tool to study microglia in vivo and to increase the understanding of how microglia contributes to myelin. In the Appendix, I present a brief review of the promises and challenges of CRISPR in gene therapy in hopes to inform the discussions on the economic, ethical, and regulatory implications of gene editing.en_US
dc.description.statementofresponsibilityby Liang Li.en_US
dc.format.extent77 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectTechnology and Policy Program.en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleInvestigating the role of microglia in myelin developmenten_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.departmentTechnology and Policy Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc1252064653en_US
dc.description.collectionS.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Programen_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-05-24T20:24:00Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentTPPen_US
mit.thesis.departmentESDen_US
mit.thesis.departmentIDSSen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record