MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

IMU-based estimation of human lower body kinematics and applications to extravehicular operations

Author(s)
McGrath, Timothy M.(Timothy Michael)
Thumbnail
Download1252627372-MIT.pdf (2.903Mb)
Alternative title
Inertial measurement unit-based estimation of human lower body kinematics and applications to extravehicular operations
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Leia A. Stirling.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The use of body-worn inertial measurement units (IMUs) as an alternative to traditional human optical motion capture (OMC) techniques has gained increasing attention over the last twenty years. In contrast to traditional OMC, IMUs are less intrusive and allow measurements to be taken in the environment of interest--not just a contrived laboratory space. The primary goal of this work is to advance human-IMU kinematic modeling and estimation techniques through increasing the accuracy of IMU-derived human skeletal joint angles while minimizing the required calibration necessary to use an IMU-based human mocap system. A secondary goal of this work is to demonstrate practical application of an IMU-based mocap system to a specific domain of interest: space suit design and operations. In this domain, IMUs offer a tractable approach to understanding suited or unsuited human kinematics in the field. The capture of these kinematics in relevant environments allow engineers to better design and maintain space suits as well as model the operational paradigms which enable the future of human extraplanetary spaceflight.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, February, 2021
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 149-168).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130808
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.