Show simple item record

dc.contributor.advisorForest M. White.en_US
dc.contributor.authorMorshed, Nader Francis.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2021-05-25T18:21:12Z
dc.date.available2021-05-25T18:21:12Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/130816
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, February, 2021en_US
dc.descriptionCataloged from the official PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages [137]-[153]).en_US
dc.description.abstractAlzheimer's disease (AD) is a form of dementia characterized by the appearance of amyloid-[beta] plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Despite numerous clinical trials, a limited understanding of disease pathogenesis has prevented the development of effective therapies. Several lines of genetic and biomolecular evidence indicate that AD progression involves cellular signaling through neuronal and glial protein phosphorylation networks. In order to understand which phosphorylation networks are dysregulated, I use mass spectrometry to characterize the phosphoproteome of post-mortem brain tissue from AD patients and multiple mouse models of AD. Using computational analysis, I identified several signaling pathways that are dysregulated before neurodegeneration occurs. Many of these signaling factors were expressed primarily in non-neuronal cell types, including microglia, astrocytes, and oligodendrocytes.en_US
dc.description.abstractMy results highlight potential therapeutic targets in the signaling responses of glial cells and are split into two parts. In the first part of this thesis, I have quantified the phosphoproteome of the CK-p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. I identified a shared response involving Siglec-F which was upregulated on a subset of reactive microglia. The human paralog Siglec-8 was also found to be upregulated on microglia in AD. Siglec-F and Siglec-8 were upregulated following microglial activation with interferon gamma (IFN[gamma]) in BV-2 cell line and human stem-cell derived microglia models. Siglec-F overexpression activates an endocytic and pyroptotic inflammatory response in BV-2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine-based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV-2 cells.en_US
dc.description.abstractCollectively, my results point to an important role for mouse Siglec-F and human Siglec-8 in regulating microglial activation during neurodegeneration. In the second part of this thesis, I performed a combined analysis of the tyrosine, serine, and threonine phosphoproteome, and proteome of temporal cortex tissue from AD patients and aged matched controls. I identified several co-correlated peptide modules that were associated with varying levels of Tau, oligodendrocyte, astrocyte, microglia, and neuronal pathologies in different patients. I observed phosphorylation sites on known Tau-kinases and other novel signaling factors that were correlated these peptide modules. Finally, I used a data-driven statistical modeling approach to identify individual peptides and co-correlated signaling networks that were predictive of AD pathologies. Together, these results build a map of pathology-associated phosphorylation signaling events occurring in AD.en_US
dc.description.statementofresponsibilityby Nader Francis Morshed.en_US
dc.format.extent153 unnumbered pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titlePhosphoproteomics analysis of Alzheimer's diseaseen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.identifier.oclc1252627422en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biological Engineeringen_US
dspace.imported2021-05-25T18:21:12Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record