Show simple item record

dc.contributor.advisorMark L. Schattenburg.en_US
dc.contributor.authorSong, Jungki.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2021-05-25T18:22:52Z
dc.date.available2021-05-25T18:22:52Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/130846
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, February, 2021en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 223-231).en_US
dc.description.abstractSmall errors in critical dimensions (CDs) or deformation of optical components can lead to severe performance degradation in high-resolution imaging and spectroscopy tools. Consistent innovations towards more precise optical elements and assembly procedures have led to high-resolution optical systems in many fields - including telescope, microscopy, lithography, and display technologies. A space x-ray telescope needs more stringent requirements as it observes distant space objects using a limited number of x-ray photons in a harsh space environment. The optical instruments for x-ray telescopes need to be high-resolution, efficient in collecting x-ray photons, and lightweight. Optical elements in x-ray telescopes have large-apertures (typically around 1-2 m²) which are realized by populating them with > 1000 high-quality optical sub-elements (i.e., mirrors or gratings).en_US
dc.description.abstractIn this thesis, we limit our attention to an xray grating spectrometer, one of the essential elements in x-ray telescopes. It is placed downstream of the focusing optics and prior to the x-ray detector to disperse nonmonochromatic x rays from distant sources for space-based x-ray spectroscopy. A critical-angle transmission (CAT) grating, a lightweight, freestanding, high-aspect ratio x-ray grating with 200-nm period and 4 [mu]m depth, is a building block for grating spectrometers. More than 1000 high-quality CAT gratings need to be manufactured and precisely aligned within tolerance to build future CAT grating spectrometers. This thesis attacks this manufacturing challenge through 1) inventing metrologies for characterizing CDs, 2) developing alignment processes, and 3) performing design and analysis of CAT grating structural supports. First, a metrology to characterize period variation of CAT gratings was developed.en_US
dc.description.abstractMetrology repeatability of 0.004 nm rms was achieved, successfully characterizing period variations of 0.018 nm rms (1 sigma) over large-area CAT gratings patterned with traditional interference lithography. The demonstrated metrology uncertainty and period variations fulfill the requirements for future x-ray telescope missions. Second, alignment metrology and protocols were developed, demonstrating an ability to align multiple CAT gratings to satisfy alignment requirements ( <6 arcmin or 0.1 deg). The developed alignment protocol is reliable and scalable for flight-level alignment, for which a large volume (>1000) of CAT gratings need to be aligned in a fast and accurate manner. Third, a metrology to characterize grating bar tilt variations was developed using small-angle x-ray scattering and a laser setup. The developed metrology demonstrated repeatability of <0.01 deg (1 [sigma]) and accuracy of ~0.08 deg (4.8 arcmin).en_US
dc.description.abstractIt successfully characterized bar tilt angle variations from CAT gratings and results agree well with synchrotron measurements. It enabled us to close the loop in process optimization for CAT grating fabrication, and contributed towards suppressing bar tilt (or blaze) error within tolerance ( <6 arcmin or 0.1 deg). Fourth, analytical and finite element studies were performed to design CAT grating structural supports that minimize x-ray blockage at a given stiffness. In-plane and out-of-plane stiffness of several 2D-lattice topologies were examined. A triangular lattice shows 23-580% on stiffness improvement ( depending on mode of stiffness) over the current hexagonal lattice design for the same open area fraction. Adopting the new 2D lattice design is expected to increase open area fraction by ~5% without compromising stiffness.en_US
dc.description.statementofresponsibilityby Jungki Song.en_US
dc.format.extent231 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleMetrology and mechanics for manufacturing space-based x-ray grating spectrometersen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1252628750en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2021-05-25T18:22:52Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record