MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Remote epitaxy of III-N membranes on amorphous boron nitride

Author(s)
Liu, Yunpeng(Mechanical engineer)Massachusetts Institute of Technology.
Thumbnail
Download1252630860-MIT.pdf (2.812Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Jeehwan Kim.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Amorphous boron nitride (aBN) has found broad applications in industrial applications. Thick aBN has been thoroughly investigated¹,², including the recent revisiting of this material at nanometer thickness. However, most investigations of aBN so far have been based on three-dimensional structures. In this thesis, Molecular-Beam Epitaxy (MBE) grown monolayer aBN in two-dimensional structure is demonstrated. In-situ gallium nitride (GaN) remote epitaxy is finished on the transparent monolayer aBN. By doing the in-situ remote epitaxy, contaminations are avoided, and epitaxial membrane quality is improved. Multi-stacking technique is developed to further enhance the manufacturing efficiency of the free-standing GaN film. Surface acoustic wave (SAW) strain sensor fabricated by free-standing ultrathin single crystalline GaN film shows good performances. Process to solve GaN device heat dissipation is presented. Relaxed InGaN film grown on aBN monolayer provides a new research direction for GaN based red LED.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, February, 2021
 
Cataloged from the official PDF version of thesis.
 
Includes bibliographical references (pages 35-37).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130861
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.