Show simple item record

dc.contributor.advisorAndrew Whittle.en_US
dc.contributor.authorWu, Sophia(Sophia W.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Institute for Data, Systems, and Society.en_US
dc.contributor.otherTechnology and Policy Program.en_US
dc.date.accessioned2021-06-17T17:21:05Z
dc.date.available2021-06-17T17:21:05Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/131001
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program, February, 2021en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 78-82).en_US
dc.description.abstractThere are nearly 1 billion people who obtain their drinking water through piped distribution networks that operate intermittently. Intermittent Water Supply (IWS) operations allow for periods of stagnation and depressurization that create conditions favorable for biofilm growth on pipe surface. Biofilms are complex microbial communities that are likely sources of opportunistic waterborne pathogens and can cause disease outbreaks. Flushing of the water pipes and re-pressurization, which occur at the start of each IWS supply cycle, cause the erosion of the biofilm and its transport into the bulk water, which can potentially contaminate the drinking water. This thesis describes the development and proof-testing of an experimental pipe testbed installed on the Nanyang Technological University (NTU) campus in Singapore.en_US
dc.description.abstractThe testbed comprises an array of 100 mm diameter PVC pipes, supplied from a water tank with flow paths controlled through a set of valves, and water samples obtained at up to 7 pipe outlets. Data are presented from an initial program of tests that compare the effects of priming for two pipe sections: 1) with continuous laminar flow (Continuous Water Supply, CWS) under pressure; and 2) IWS, where the pipe section is flushed during re-pressurization (supply period) and then allowed to drain and stagnate for the remainder of the daily cycle. The change of the water quality from both the inlet and outlet was evaluated by determining the microbial load using flow cytometry (with Live/Dead staining), together with physical and chemical water parameters measured on a time series of water samples.en_US
dc.description.abstractThe data compare the response of the CWS pipe section for steady laminar flow, with the transient response following a step-change in flow rate (turbulent conditions) with transient behavior during flushing of the IWS section. Initial filling of the IWS section cause a significant increase in total and live cell counts, confirming that erosion of biofilm can contribute to biomass transported in the bulk water. Further tests are in progress to validate and replicate these results.en_US
dc.description.statementofresponsibilityby Sophia Wu.en_US
dc.format.extent82 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleUnderstanding the effect of intermittent water supply on drinking water qualityen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.departmentTechnology and Policy Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc1256585643en_US
dc.description.collectionS.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Programen_US
dspace.imported2021-06-17T17:21:05Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentTPPen_US
mit.thesis.departmentESDen_US
mit.thesis.departmentIDSSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record