MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis of guanidinium-functionalized amphiphiles for the exploration of chaotropic supramolecular nanoribbons

Author(s)
Grey-Stewart, Danielle(Danielle N.)
Thumbnail
Download1256551124-MIT.pdf (2.992Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Julia Ortony.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Nanoscale self-assembly driven by the hydrophobic effect is of intense research interest due to the ability to synthesize complex, chemically diverse structures with molecular length scales. Supramolecular self-assemblies comprised of amphiphilic molecules have been engineered to achieve diverse applications, from drug delivery to 3D printing. The design of the component molecules in engineered assemblies are often bio-inspired, where structures are highly dynamic to respond to changes in their environment. Molecules within dynamic assemblies move rapidly due to molecular exchange and rearrangement, and the supramolecular structure is often only retained for a limited amount of time before breaking down. Aromatic amide (aramid) amphiphiles, which can form strong hydrogen bonding and pi-pi stacking between them, self-assemble into stable, mechanically strong nanofibers, in stark contrast to the assemblies that precede them. This study seeks to functionalize the aramid amphiphile nanofibers surface for the study of water dynamics by attaching a chaotropic guanidinium head group. This head group will disturb the hydrogen bonding network of surrounding water, causing a measurable change in water dynamics when analyzed using Overhauser Dynamic Nuclear Polarization. Guanidinylation was achieved, but future work must be done to create a kosmotropic analog. These two structures will be used to run parallel experiments to study the water dynamics in the local environment.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, February, 2021
 
Cataloged from the official PDF version of thesis.
 
Includes bibliographical references (pages 28-30).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/131010
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.