Probabilistic Aggregation of Uncertain Geological Resources
Author(s)
Kaufman, G. M; Olea, R. A; Faith, R.; Blondes, M. S
Download11004_2018_9747_ReferencePDF.pdf (1.004Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Abstract
Commodities such as oil and gas occur in isolated reservoirs or accumulations, more generically called basic units here. To understand a study area’s economic potential and to craft plans for exploration and development, resource analysts often aggregate (sum, accumulate) basic unit magnitudes in distinct spatial subsets of the study area and then appraise the total area’s potential by summing these intermediate sums. In a probabilistic approach, magnitudes are modeled as random variables. Some have asked, “Do different methods of partitioning basic units into subsets lead to different probability distributions for the sum of all basic unit magnitudes?” Any method of aggregation of basic unit magnitudes which obeys the rules of probability leads to the same probability distribution of the sum of all unit magnitudes as that computed by direct summation of all basic unit magnitudes. A Monte Carlo simulation of a synthetic example in which the magnitude of resource in each unit is marginally lognormal and pairwise correlations among basic unit magnitudes are specified illustrates key features of probabilistic aggregation. The joint distribution of certain pairs of aggregates are closely approximated by a bivariate lognormal distribution.
Date issued
2018-07Department
Sloan School of ManagementJournal
Mathematical Geosciences
Publisher
Springer Berlin Heidelberg
ISSN
1874-8953
1874-8961