MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance investigation of PEMFC with rectangle blockages in Gas Channel based on field synergy principle

Author(s)
Shen, Jun; Zeng, Lingping; Liu, Zhichun; Liu, Wei
Thumbnail
Download231_2018_2473_ReferencePDF.pdf (1.835Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract This work, using three-dimension proton exchange membrane fuel cell (PEMFC) model combined with theoretical analysis, is mainly to improve the performance of PEMFC through optimizations of fuel cell structure, adding rectangle blockages in the gas channel. Performance comparison, velocity distribution, interface reactant concentration difference, and pressure drop have been studied in the paper. The result shows that, longitudinal vortices would appear and the performance could be improved with the addition of blockages in the gas channel, especially at high current density with closer arrangement. According to field synergy principle, average mass transfer synergy angle could prove the superiority of optimized structure in the ability of mass transfer. Besides, a novel physical quantity, effective mass transfer coefficient, has been proposed. The effective mass transfer coefficient, is the ability of mass transfer in the direction of electrochemical reaction in PEMFC, which could also give mechanism explanation for the performance improvement.
Date issued
2018-09-01
URI
https://hdl.handle.net/1721.1/131560
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.