Show simple item record

dc.contributor.authorArgüelles, C.A.
dc.contributor.authorSchneider, A.
dc.contributor.authorYuan, T.
dc.date.accessioned2022-04-14T16:21:17Z
dc.date.available2021-09-20T17:29:36Z
dc.date.available2022-04-14T16:21:17Z
dc.date.issued2019-06-10
dc.identifier.urihttps://hdl.handle.net/1721.1/131681.2
dc.description.abstractAbstract Metrics of model goodness-of-fit, model comparison, and model parameter estimation are the main categories of statistical problems in science. Bayesian and frequentist methods that address these questions often rely on a likelihood function, which is the key ingredient in order to assess the plausibility of model parameters given observed data. In some complex systems or experimental setups, predicting the outcome of a model cannot be done analytically, and Monte Carlo techniques are used. In this paper, we present a new analytic likelihood that takes into account Monte Carlo uncertainties, appropriate for use in the large and small sample size limits. Our formulation performs better than semi-analytic methods, prevents strong claims on biased statements, and provides improved coverage properties compared to available methods.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP06(2019)030en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleA binned likelihood for stochastic modelsen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2019 Jun 10;2019(6):30en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-26T13:01:43Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2020-06-26T13:01:43Z
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version