Show simple item record

dc.contributor.authorAkiyama, Jin
dc.contributor.authorDemaine, Erik D
dc.contributor.authorLangerman, Stefan
dc.date.accessioned2021-12-17T17:05:56Z
dc.date.available2021-09-20T17:30:20Z
dc.date.available2021-12-17T17:05:56Z
dc.date.issued2019-05
dc.identifier.urihttps://hdl.handle.net/1721.1/131807.2
dc.description.abstractWe prove that two polygons A and B have a reversible hinged dissection (a chain hinged dissection that reverses inside and outside boundaries when folding between A and B) if and only if A and B are two noncrossing nets of a common polyhedron. Furthermore, monotone reversible hinged dissections (where all hinges rotate in the same direction when changing from A to B) correspond exactly to noncrossing nets of a common convex polyhedron. By envelope/parcel magic, it becomes easy to design many hinged dissections.en_US
dc.publisherSpringer Japanen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00373-019-02041-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Japanen_US
dc.titlePolyhedral Characterization of Reversible Hinged Dissectionsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T20:43:45Z
dc.language.rfc3066en
dc.rights.holderSpringer Japan KK, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T20:43:45Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version