Faster Sickling Kinetics and Sickle Cell Shape Evolution during Repeated Deoxygenation and Oxygenation Cycles
Author(s)
Du, E.; Dao, M.
Download11340_2018_444_ReferencePDF.pdf (1019.Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Abstract
Kinetics of cell sickling and morphological change have been recognized as important parameters that are correlated closely with altered blood rheology and vasoocclusion in microcirculation. A microfluidic transient hypoxia assay was developed to create repeated hypoxia-normoxia cycles for real time observation of repetitive sickling and unsickling of freely suspended red blood cells (RBCs) from sickle cell disease patients. Cell sickling behavior and kinetics were found to be influenced by its previous sickling-unsickling processes accumulatively, where those sickled RBCs that had a history of sickling in a previous hypoxia cycle would sickle again in subsequent hypoxia/sickling cycles and the collective sickling kinetics became progressively faster (with reduced delay time and higher sickled fraction versus deoxygenation time). Individual sickled RBCs would sickle into drastically different shapes randomly in subsequent hypoxia/sickling cycles, however, the collective shape distribution retained similar characteristics. These observations indicate a gradual worsening trend in sickling kinetics over repeated hypoxia cycles, as well as a relatively stable collective shape characteristics within a limited number of hypoxia-normoxia cycles.
Date issued
2018-11Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Experimental Mechanics
Publisher
Springer Science and Business Media LLC
ISSN
0014-4851
1741-2765