Show simple item record

dc.contributor.authorShnitzer, Tal
dc.contributor.authorTalmon, Ronen
dc.contributor.authorSlotine, Jean-Jacques E
dc.date.accessioned2022-08-18T18:34:26Z
dc.date.available2021-09-20T18:21:09Z
dc.date.available2022-08-18T18:34:26Z
dc.date.issued2016
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.urihttps://hdl.handle.net/1721.1/132143.2
dc.description.abstractAnalyzing signals arising from dynamical systems typically requires many modeling assumptions. In high dimensions, this modeling is particularly difficult due to the "curse of dimensionality." In this paper, we propose a method for building an intrinsic representation of such signals in a purely data-driven manner. First, we apply a manifold learning technique, diffusion maps, to learn the intrinsic model of the latent variables of the dynamical system, solely from the measurements. Second, we use concepts and tools from control theory and build a linear contracting observer to estimate the latent variables in a sequential manner from new incoming measurements. The effectiveness of the presented framework is demonstrated by applying it to a toy problem and to a music analysis application. In these examples, we show that our method reveals the intrinsic variables of the analyzed dynamical systems.en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TSP.2016.2616334en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleManifold Learning With Contracting Observers for Data-Driven Time-Series Analysisen_US
dc.typeArticleen_US
dc.identifier.citationShnitzer, Tal, Ronen Talmon, and Jean-Jacques Slotine. “Manifold Learning With Contracting Observers for Data-Driven Time-Series Analysis.” IEEE Transactions on Signal Processing 65, no. 4 (February 15, 2017): 904–918. doi:10.1109/tsp.2016.2616334.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Nonlinear Systems Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalIEEE Transactions on Signal Processingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-01-03T14:23:46Z
dspace.orderedauthorsShnitzer, Tal; Talmon, Ronen; Slotine, Jean-Jacquesen_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T14:37:09Z
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version