Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO
Author(s)
LIGO Scientific Collaboration; Virgo Collaboration; Aggarwal, Nancy; Barnum, Sam; Barsotti, Lisa; Biscans, Sebastien; Buikema, Aaron; Demos, Nicholas; Donovan, Frederick J; Eisenstein, Robert Alan; Evans, Matthew J; Fernandez Galiana, Alvaro-Miguel; Fishner, Jason M.; Fritschel, Peter K; Gras, Slawomir; Hall, E. D.; Katsavounidis, Erotokritos; Kontos, Antonios; Lane, B. B.; Lanza Jr, Robert K; Lynch, Ryan Christopher; MacInnis, Myron E; Mansell, Georgia; Mason, Kenneth R; Matichard, Fabrice; Mavalvala, Nergis; McCuller, Lee P; Mittleman, Richard K; Ray Pitambar Mohapatra, Satyanarayan; Ng, Kwan Yeung; Shoemaker, David H; Sudhir, Vivishek; Tse, Maggie; Vitale, Salvatore; Weiss, Rainer; Whittle, Christopher Mark; Yu, Haocun; Yu, Haocun; Zucker, Michael E; ... Show more Show less
DownloadPublished version (1.951Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
© 2019. The American Astronomical Society. All rights reserved. We describe directed searches for continuous gravitational waves (GWs) from 16 well-localized candidate neutron stars, assuming none of the stars has a binary companion. The searches were directed toward 15 supernova remnants and Fomalhaut b, a directly imaged extrasolar planet candidate that has been suggested to be a nearby old neutron star. Each search covered a broad band of frequencies and first and second time derivatives. After coherently integrating spans of data from the first Advanced LIGO observing run of 3.5-53.7 days per search, applying data-based vetoes, and discounting known instrumental artifacts, we found no astrophysical signals. We set upper limits on intrinsic GW strain as strict as 1 ×10-25, fiducial neutron star ellipticity as strict as 2 ×10-9, and fiducial r-mode amplitude as strict as 3 ×10-8.
Date issued
2019Department
LIGO (Observatory : Massachusetts Institute of Technology); Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space ResearchJournal
Astrophysical Journal
Publisher
American Astronomical Society