The origin of X-ray emission in the gamma-ray emitting narrow-line Seyfert 1 1H 0323+342
Author(s)
Mundo, Sergio A; Kara, Erin A; Cackett, Edward M; Fabian, AC; Jiang, J; Mushotzky, RF; Parker, ML; Pinto, C; Reynolds, CS; Zoghbi, A; ... Show more Show less
DownloadAccepted version (880.8Kb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
<jats:title>ABSTRACT</jats:title>
<jats:p>We present the results of X-ray spectral and timing analyses of the closest gamma-ray emitting narrow-line Seyfert 1 (γ-NLS1) galaxy, 1H 0323+342. We use observations from a recent, simultaneous XMM–Newton/NuSTAR campaign. As in radio-quiet NLS1s, the spectrum reveals a soft excess at low energies (≲2 keV) and reflection features such as a broad iron K emission line. We also find evidence of a hard excess at energies above ∼35 keV that is likely a consequence of jet emission. Our analysis shows that relativistic reflection is statistically required, and using a combination of models that includes the reflection model relxill for the broad-band spectrum, we find an inclination of $i=63^{+7}_{-5}$ degrees, which is in tension with much lower values inferred by superluminal motion in radio observations. We also find a flat (q = 2.2 ± 0.3) emissivity profile, implying that there is more reflected flux than usual being emitted from the outer regions of the disc, which in turn suggests a deviation from the thin disc model assumption. We discuss possible reasons for this, such as reflection off of a thick accretion disc geometry.</jats:p>
Date issued
2019Department
MIT Kavli Institute for Astrophysics and Space Research; Massachusetts Institute of Technology. Department of PhysicsJournal
Monthly Notices of the Royal Astronomical Society
Publisher
Oxford University Press (OUP)