Show simple item record

dc.contributor.authorDonoghue, Jacob A. (Jacob Alexander)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences.en_US
dc.date.accessioned2021-10-06T19:57:06Z
dc.date.available2021-10-06T19:57:06Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/132745
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, June, 2019en_US
dc.descriptionCataloged from the PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 179-192).en_US
dc.description.abstractGeneral anesthesia (GA) reversibly induces unconsciousness. It is arguably the most powerful brain state manipulation that clinicians and researchers can reliably perform. However, the mechanisms underlying GA at the neural systems level are underexplored and largely not understood. To link neural dynamics to the loss of consciousness, we measured spiking activity and local field potentials (LFPs) from multiple cortical and thalamic regions while monkeys were pharmacologically rendered unconscious. In Chapter 2, we examine effects of the GABAergic anesthetic propofol across prefrontal cortices (PFC), parietal cortex, temporal cortex, and the mediodorsal and intralaminar thalamic nuclei. Propofol decreased brain-wide spiking and high-frequency LFPs (e.g. gamma, 30- 80Hz) while producing prominent slow cortical oscillations (0-4 Hz). These slow rhythms were incoherent across PFC yet synchronized in frontoparietal networks. Electrical stimulation of the central thalamus immediately and continuously reversed the neurophysiological effects of propofol and awakened the anesthetized monkeys. Thus, we interpret GABAergic anesthetics to produce unconsciousness via fragmented network dynamics facilitated by subcortical arousal pathway inhibition. In Chapter 3, we explore an alternative unconscious state mediated by the anti-glutamatergic anesthetic ketamine. Ketamine substantially increased spiking and gamma rhythms while eliminating beta (13- 25 Hz) power and coherence across the cortical areas studied in Chapter 2. In anesthesia, slow waves interrupted high-frequency activity globally and PFC uniquely entrained central thalamic LFPs. Seemingly, ketamine harnesses an excitatory mechanism to disrupt conscious processing, overwhelming cortex with disordered spiking activity and binding thalamo-prefrontal flexibility. In Chapter 4, we describe our model for closed-loop control of GA in monkeys. We established and implemented a pharmacokinetic-pharmacodynamic paradigm within an optimal control framework that automatically titrated propofol using an LFP-derived GA biomarker. Together, this collection of work demonstrates the distinct network mechanisms that can drive GA and the systems-level approach to enhanced control of conscious states.en_US
dc.description.statementofresponsibilityby Jacob A. Donoghue.en_US
dc.format.extent194 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBrain and Cognitive Sciences.en_US
dc.titleNeural dynamics of the anesthetized brain and the control of conscious statesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.identifier.oclc1264707966en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Brain and Cognitive Sciencesen_US
dspace.imported2021-10-06T19:57:06Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBrainen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record