Show simple item record

dc.contributor.authorBaylor, Brandon S. (Brandon Scott)en_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering and Management Program.en_US
dc.contributor.otherSystem Design and Management Program.en_US
dc.date.accessioned2021-10-08T16:48:04Z
dc.date.available2021-10-08T16:48:04Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/132801
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, September, 2020en_US
dc.descriptionCataloged from the official version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 189-191).en_US
dc.description.abstractChevron, one of the world's leading integrated energy companies, faces new challenges as it aggressively pursues digital innovation and acceleration. Oil and gas well construction, in particular, will continue to incorporate automation to enhance capabilities and gain a competitive advantage. These changes to the technology landscape will fundamentally alter the nature of well construction and the interactions pertaining to well design, operation, and maintenance. WellSafe, Chevron's well control assurance program, was created to ensure process safety hazards are controlled and to prevent large-scale incidents. Since its inception in 2015, WellSafe has brought incremental improvements. To continuously adapt and keep pace with the ongoing digital transformation, WellSafe must use systems engineering principles, methods, and tools to improve in the face of a changing environment. System-Theoretic Accident Models and Processes (STAMP) and System-Theoretic Process Analysis (STPA) developed by MIT's Nancy Leveson help assess WellSafe and uncover opportunities to improve. This thesis analyzes the WellSafe assurance program and generates system requirements based on causal factors that impact the efficacy of the program. This, in turn, helps identify safe system boundaries and constraints that must be enforced to achieve system safety. This thesis demonstrates the value of STPA as an integrated analysis method and offers specific recommendations to improve the WellSafe program.en_US
dc.description.statementofresponsibilityby Brandon S. Baylor.en_US
dc.format.extent191 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.titleA system-theoretic approach to oil and gas assurance programsen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.identifier.oclc1262986908en_US
dc.description.collectionS.M.inEngineeringandManagement Massachusetts Institute of Technology, System Design and Management Programen_US
dspace.imported2021-10-08T16:48:04Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSysDesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record