Show simple item record

dc.contributor.authorHanley, Nicholas R. (Nicholas Ryan)en_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering and Management Program.en_US
dc.contributor.otherSystem Design and Management Program.en_US
dc.coverage.spatialn-us---en_US
dc.date.accessioned2021-10-08T16:48:29Z
dc.date.available2021-10-08T16:48:29Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/132817
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, September, 2020en_US
dc.descriptionCataloged from the official version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 171-173).en_US
dc.description.abstractThe United States (US) Navy struggles to sustain its ranks of aviators; it therefore seeks to produce more pilots, more quickly, without additional resources. This thesis employs the Architecting Innovative Enterprise Strategy (ARIES) framework, Factory Physics methodologies, and experimental models to investigate new policies, organizational structures, processes, and knowledge that support this imperative in the Navy's Primary Flight Training commands. It addresses promising changes to Primary and how to facilitate them. The ARIES framework, and associated stakeholder interviews, logically investigate the qualitative intricacies of Primary to illustrate its operation. Quantitative internal baseline methods suggest policies for student inventory management, student prioritization, and aircraft allocation. Each technique is tested by a joint discrete process and agent-based student model. This investigation suggests that Primary is challenged by an excessive student inventory and unclear operations policies. It asserts that these two factors create excessive wait time and resource-wasting rework that drastically reduce production performance. Experimentation results qualify the trends of these detriments and quantify their impacts on throughput and training time. The work concludes that a tightly governed start rate can be paired with three concurrent policies to raise average throughput by 62% and reduce average time to train by 52%. 1. Prioritize students by their total time in training to reduce the impacts of rework. 2. Allocate resources to the largest queues to increase peak performance and capacity. 3. Manage student inventory via a constant work in process (CONWIP) policy to reduce the impacts of rework and dampen sensitivity to resource variations. It also suggests minimally disruptive changes to Primary's architecture that aim to reduce organizational, knowledge, and process complexities while promoting sustainability, scalability, and evolvability in the enterprise. Four core concepts summarize the rearchitecting effort: 1. Employ data analytics in the current infrastructure to aid in decision making. 2. Balance organizational centralization to support flexible but consistent performance. 3. Consolidate and reinforce institutional knowledge in stable employees. 4. Promote knowledge sharing and coordination to improve organizational learning. This thesis asserts that application of these new policies and re-architecting concepts will promote production performance, organizational knowledge, and proactive management.en_US
dc.description.statementofresponsibilityby Nicholas R. Hanley.en_US
dc.format.extent173 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.titleAn analysis of production policy in U.S. Naval Aviation's Primary Flight trainingen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.identifier.oclc1262990661en_US
dc.description.collectionS.M.inEngineeringandManagement Massachusetts Institute of Technology, System Design and Management Programen_US
dspace.imported2021-10-08T16:48:29Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSysDesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record