MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A systems analysis and technology roadmap for fall mitigation systems for the elderly

Author(s)
Enti Ranga Reddy, Vikas Reddy.
Thumbnail
Download1262990670-MIT.pdf (9.844Mb)
Other Contributors
Massachusetts Institute of Technology. Engineering and Management Program.
System Design and Management Program.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Falls and fall related injuries in the elderly (aged 65 and older) are a major health challenge - both to the affected individual and to the public health system. Approximately 28-35% of the elderly fall each year and falls lead to 20-30% of mild to severe injuries, and are underlying cause of 10-15% of all emergency room (ER) visits. Falls cause 90% of the hip fractures in the elderly and also result in medical complications and high morbidity if the person does not receive prompt medical attention. A fall mitigation system (FMS) is either a wearable or ambient system that detects falls, reduces fall related injuries and issues emergency alerts to prevent the long-lie. Current FMS have poor user adoption and are not as effective in preventing the long-lie. This thesis uses a systems approach to analyze architectures for a fall mitigation system architecture that can detect falls, reduce injury and issue emergency alerts to reliably prevent the long-lie in independent elders. A National Health Interview Survey data was analyzed to understand the causes for falls, types of fall related injuries and common fall locations for community dwelling elders. A concept of operations was defined based on these findings and a user survey was conducted to understand the needs of community dwelling elders and the results were analyzed to prioritize system requirements for a fall mitigation system (FMS). An FMS was decomposed into six level 2 functions and the various form choices for each of these functions were analyzed and rated for performance, power consumption and cost. Five different fall mitigation system architectures were analyzed and the Distributed-Hybrid architecture had the highest performance while the Integrated-Wearable architecture had the lowest power consumption. Future technology trends in robotics, AI, neuromorphic computing and energy harvesting were studied to create a long-term strategic roadmap for fall mitigation systems. Neuromorphic architectures for computing and sensing offer the biggest performance per unit power unlock for fall mitigation systems.
Description
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, May, 2020
 
Cataloged from the official version of thesis.
 
Includes bibliographical references (pages 71-76).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/132818
Department
Massachusetts Institute of Technology. Engineering and Management Program
Publisher
Massachusetts Institute of Technology
Keywords
Engineering and Management Program., System Design and Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.