Show simple item record

dc.contributor.authorLee, Jeffrey Liang.en_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering and Management Program.en_US
dc.contributor.otherSystem Design and Management Program.en_US
dc.date.accessioned2021-10-08T16:59:04Z
dc.date.available2021-10-08T16:59:04Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/132841
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, September, 2020en_US
dc.descriptionCataloged from the official version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 65-67).en_US
dc.description.abstractCalibration of Magnetic Flux Leakage (MFL) In-line Inspection (ILI) tools is an important part of the overall pipeline integrity management process. Over-called or under-called corrosion features can have significant impacts on safety and resource management. This thesis examines methods for improving the Validation and Calibration processes using Bayesian Inference. The focus is on improving the tolerance that is applied to undug features to optimize the execution of risk-based repairs. A simulated data set was generated, with two separate categories, one which represents tool performance on basic features and another for challenging features. The calculated parameters of [alpha], [beta], and [sigma], were calculated using a Bayesian model leveraging a Markov Chain Monte Carlo simulator. The [sigma] parameter is used to determine the appropriate tolerance to apply and was compared with a [sigma] calculated via the method recommended by API 1163. Results from the example data set show that in challenged situations, the Confidence Level of the tool performance can be increased from 89% to 95% and the mean average error can be decreased using the Bayesian Inference model. Opportunities to use the methods outlined to improve other processes in ILI validation are discussed. By appropriately updating the likelihood used in the Bayesian model with dig data, the tolerance can more accurately represent the undug features and risk management decisions can be conducted accordingly.en_US
dc.description.statementofresponsibilityby Jeffrey Liang Lee.en_US
dc.format.extent67 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.titleBayesian calibration of in-line inspection tool toleranceen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.identifier.oclc1263244318en_US
dc.description.collectionS.M.inEngineeringandManagement Massachusetts Institute of Technology, System Design and Management Programen_US
dspace.imported2021-10-08T16:59:04Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSysDesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record