MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Architecting SatCom-Enabled Early Warning Systems in Indonesia

Author(s)
Nikicio, Ajie Nayaka.
Thumbnail
Download1263357531-MIT.pdf (3.916Mb)
Other Contributors
Massachusetts Institute of Technology. Engineering and Management Program.
System Design and Management Program.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Indonesia lies within the Ring of Fire, making the country highly prone to geophysical disasters such as earthquakes and tsunamis, in addition to weather-related disasters such as floods, landslides, and wildfires. One effective way to reduce the risk of getting hit by these natural disaster hazards is through the deployment and operation of early warning systems. Early warning systems are generally responsible for two things: identifying the hazard precursors and delivering the warning in a timely manner. In both of these functions, wireless communication plays a critical role. Terrestrial communication, however, is often compromised when a disaster hits. Satellite communication (SatCom) offers a promising alternative not only for warning transmission, but also precursor detection from the thousands of disaster monitoring sensors deployed. It enables the placement of such sensors in remote areas, often closer to the source of the hazards. This thesis uses system architecture concepts to evaluate the pros and cons of the various terrestrial and satellite communication technologies in the context of early warning systems and suggest the best architecture for each use case. Based on the results of the analysis, satellite L-band, S-band, amateur radio, and newer technologies such as satellite LPWAN and GSM can provide significant benefits in terms of performance and cost. Additionally, the benefit of combining technical development and community engagement are highlighted for a sustainable early warning system. Findings from this thesis are hoped to provide the relevant government agencies in Indonesia and other countries with similar challenges for disaster risk reduction.
Description
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, February, 2021
 
Cataloged from the official version of thesis. "February 2021."
 
Includes bibliographical references (pages 96-110).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/132889
Department
Massachusetts Institute of Technology. Engineering and Management Program
Publisher
Massachusetts Institute of Technology
Keywords
Engineering and Management Program., System Design and Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.