Show simple item record

dc.contributor.authorNing, Ke.en_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering and Management Program.en_US
dc.contributor.otherSystem Design and Management Program.en_US
dc.date.accessioned2021-10-08T17:10:42Z
dc.date.available2021-10-08T17:10:42Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/132891
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, February, 2021en_US
dc.descriptionCataloged from the official version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 60-66).en_US
dc.description.abstractToday's power grid is composed of different kinds of distributed energy resources (DER) such as solar panels, wind farms, batteries and power transformers. DERs often come with data interfaces and IoT sensors which generate large amounts of data. Besides monitoring device status, those data can be utilized to improve system efficiency and generate additional values. My thesis is to examine the benefits of technologies that incorporate AI algorithms on the growing DER data in a technical perspective; First, a new field after IoT technology, called AIoT (Artificial Intelligence Internet of Things) is introduced, which are new technologies combining artificial intelligence (AI) and IoT to each other and creating new opportunities in the distributed energy resources (DER) field. Second, the thesis focuses on three areas of AIoT applications (1) fault prediction in photovoltaic system and power transformers; (2) remaining useful life (RUL) prediction of IoT enabled equipment; (3) AI-enabled algorithms can automate processes and make real time grid system optimization, such as energy storage, demand response (DR) and grid flexibility. The main focus is on data driven AI techniques that differentiate from traditional statistics or knowledge-based systems, present algorithm applicability, compare improvement over traditional method and business value created in each area. Finally, in the smart grid concept, all AIoT powered distributed energy resources (DER) can be aggregated in terms of virtual power plant (VPP), which enable the management of efficient and reliable power network on a large scale, and coordinate demand and supply in real-time. The AI enabled VPP architecture is presented, which utilized all the AIoT technologies and can provide valuable system capacity, flexibility and reliability.en_US
dc.description.statementofresponsibilityby Ke Ning.en_US
dc.format.extent66 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.titleData driven artificial intelligence techniques in renewable energy systemen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.identifier.oclc1263357737en_US
dc.description.collectionS.M.inEngineeringandManagement Massachusetts Institute of Technology, System Design and Management Programen_US
dspace.imported2021-10-08T17:10:42Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSysDesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record