MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring crystallographic compatibility in polycrystalline Cu-based shape-memory alloys

Author(s)
Payne, Madelyn (Madelyn I.)
Thumbnail
Download1263579538-MIT.pdf (28.31Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Shape-memory alloys (SMAs) are a class of materials that can recover from apparent permanent strain (on the order of 5%) due to a solid-to-solid phase transformation. It has been recently suggested that SMAs satisfying a set of so-called cofactor conditions possess perfect interface compatibility and additional microstructural flexibility during transformation, which are theorized to result in excellent reversibility. Cu-based SMAs are cheaper than other alternatives, but polycrystalline Cu-based SMAs are unable to withstand many cycles because they are prone to cracking and degradation of functional properties. Previous research has identied improved shape-memory properties in Cu-Al-Ni-Mn SMAs in the oligocrystalline state, but polycrystalline material of the same composition has yet to be characterized. In this thesis, I characterize the compatibility of Cu-Al-Ni-Mn alloys according to the cofactor conditions and correlate these findings with results from superelastic mechanical cycling. Building on this knowledge, I also present a new alloy design that is predicted to meet the cofactor conditions and provides a promising path forward for a functionally stable, low-cost, polycrystalline Cu-based SMA.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, June, 2019
 
Cataloged from the official PDF version of thesis.
 
Includes bibliographical references (pages 47-49).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/132913
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.