MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gaussian asymptotics of discrete β β -ensembles

Author(s)
Borodin, Alexei; Gorin, Vadim; Guionnet, Alice
Thumbnail
DownloadAccepted version (903.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2016, IHES and Springer-Verlag Berlin Heidelberg. We introduce and study stochastic N-particle ensembles which are discretizations for general-β log-gases of random matrix theory. The examples include random tilings, families of non-intersecting paths, (z, w) -measures, etc. We prove that under technical assumptions on general analytic potential, the global fluctuations for such ensembles are asymptotically Gaussian as N→ ∞. The covariance is universal and coincides with its counterpart in random matrix theory. Our main tool is an appropriate discrete version of the Schwinger-Dyson (or loop) equations, which originates in the work of Nekrasov and his collaborators.
Date issued
2017
URI
https://hdl.handle.net/1721.1/133899
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Publications Mathematiques de l'Institut des Hautes Etudes Scientifiques
Publisher
Springer Nature

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.