Show simple item record

dc.contributor.authorDyatlov, Semyon
dc.contributor.authorGuillarmou, Colin
dc.date.accessioned2021-10-27T19:57:12Z
dc.date.available2021-10-27T19:57:12Z
dc.date.issued2016
dc.identifier.urihttps://hdl.handle.net/1721.1/133913
dc.description.abstract© 2016, Springer International Publishing. We define Pollicott–Ruelle resonances for geodesic flows on noncompact asymptotically hyperbolic negatively curved manifolds, as well as for more general open hyperbolic systems related to Axiom A flows. These resonances are the poles of the meromorphic continuation of the resolvent of the generator of the flow and they describe decay of classical correlations. As an application, we show that the Ruelle zeta function extends meromorphically to the entire complex plane.
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.isversionof10.1007/S00023-016-0491-8
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titlePollicott–Ruelle Resonances for Open Systems
dc.typeArticle
dc.identifier.citationDyatlov, S., and C. Guillarmou. "Pollicott�Ruelle Resonances for Open Systems." Annales Henri Poincare (2016): 1-58.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalAnnales Henri Poincare
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-04-28T16:45:03Z
dspace.orderedauthorsDyatlov, S; Guillarmou, C
dspace.date.submission2021-04-28T16:45:04Z
mit.journal.volume17
mit.journal.issue11
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record