Show simple item record

dc.contributor.authorAlley, Ethan C
dc.contributor.authorTurpin, Miles
dc.contributor.authorLiu, Andrew Bo
dc.contributor.authorKulp-McDowall, Taylor
dc.contributor.authorSwett, Jacob
dc.contributor.authorEdison, Rey
dc.contributor.authorVon Stetina, Stephen E
dc.contributor.authorChurch, George M
dc.contributor.authorEsvelt, Kevin Michael
dc.date.accessioned2022-06-30T20:27:20Z
dc.date.available2021-10-27T19:57:35Z
dc.date.available2022-06-30T20:27:20Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/134004.2
dc.description.abstract© 2020, The Author(s). The promise of biotechnology is tempered by its potential for accidental or deliberate misuse. Reliably identifying telltale signatures characteristic to different genetic designers, termed ‘genetic engineering attribution’, would deter misuse, yet is still considered unsolved. Here, we show that recurrent neural networks trained on DNA motifs and basic phenotype data can reach 70% attribution accuracy in distinguishing between over 1,300 labs. To make these models usable in practice, we introduce a framework for weighing predictions against other investigative evidence using calibration, and bring our model to within 1.6% of perfect calibration. Additionally, we demonstrate that simple models can accurately predict both the nation-state-of-origin and ancestor labs, forming the foundation of an integrated attribution toolkit which should promote responsible innovation and international security alike.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-020-19612-0en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleA machine learning toolkit for genetic engineering attribution to facilitate biosecurityen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-06-23T16:18:34Z
dspace.orderedauthorsAlley, EC; Turpin, M; Liu, AB; Kulp-McDowall, T; Swett, J; Edison, R; Von Stetina, SE; Church, GM; Esvelt, KMen_US
dspace.date.submission2021-06-23T16:18:36Z
mit.journal.volume11en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version