MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Single‐Step Hot Embossing Process for Integration of Microlens Arrays in Biodegradable Substrates for Improved Light Extraction of Light‐Emitting Devices

Author(s)
Jürgensen, Nils; Fritz, Benjamin; Mertens, Adrian; Tisserant, Jean-Nicolas; Kolle, Mathias; Gomard, Guillaume; Hernandez-Sosa, Gerardo; ... Show more Show less
Thumbnail
DownloadPublished version (2.161Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Integration of light management solutions relying on biodegradable materials in organic light-emitting devices could assist the development of sustainable light sources or conformable and wearable display technology. Using industrially relevant processing techniques, it is shown that microlens arrays can be seamlessly integrated into flexible and biodegradable cellulose diacetate substrates to facilitate extraction of the trapped substrate modes in light-emitting electrochemical cells. The substrates are patterned for light extraction and optimized for scalable printing processes in a single step by thermally embossing microlenses with polydimethylsiloxane molds on one substrate surface and simultaneous flattening of the other. Furthermore, by implementing the biopolymer substrate with microlens arrays, the total volume fraction of biodegradable materials in the microlense equipped device is 99.94%. The embossed microstructures on the biopolymer substrates are investigated by means of scanning electron microscopy and the angular light extraction profile of the devices is measured and compared to ray tracing simulations. Light-emitting electrochemical cells with integrated microlens array substrates achieve an efficiency enhancement factor of 1.45, exceeding conventional organic light-emitting diodes on glass substrates with laminated microlens arrays (enhancement factor of 1.23).
Date issued
2021
URI
https://hdl.handle.net/1721.1/134353
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Advanced Materials Technologies
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.