Why Simple Quadrature is just as good as Monte Carlo
Author(s)
Vanslette, Kevin; Al Alsheikh, Abdullatif; Youcef-Toumi, Kamal
DownloadAccepted version (511.9Kb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
© 2020 Walter de Gruyter GmbH, Berlin/Boston. We motive and calculate Newton-Cotes quadrature integration variance and compare it directly with Monte Carlo (MC) integration variance. We find an equivalence between deterministic quadrature sampling and random MC sampling by noting that MC random sampling is statistically indistinguishable from a method that uses deterministic sampling on a randomly shuffled (permuted) function. We use this statistical equivalence to regularize the form of permissible Bayesian quadrature integration priors such that they are guaranteed to be objectively comparable with MC. This leads to the proof that simple quadrature methods have expected variances that are less than or equal to their corresponding theoretical MC integration variances. Separately, using Bayesian probability theory, we find that the theoretical standard deviations of the unbiased errors of simple Newton-Cotes composite quadrature integrations improve over their worst case errors by an extra dimension independent factor α N - 12. This dimension independent factor is validated in our simulations.
Date issued
2020Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Monte Carlo Methods and Applications
Publisher
Walter de Gruyter GmbH