MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

One-dimensional staged self-assembly

Author(s)
Demaine, Erik D; Eisenstat, Sarah; Ishaque, Mashhood; Winslow, Andrew
Thumbnail
DownloadAccepted version (232.3Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We introduce the problem of staged self-assembly of one-dimensional nanostructures, which becomes interesting when the elements are labeled (e.g., representing functional units that must be placed at specific locations). In a restricted model in which each operation has a single terminal assembly, we prove that assembling a given string of labels with the fewest steps is equivalent, up to constant factors, to compressing the string to be uniquely derived from the smallest possible context-free grammar (a well-studied O(log n)-approximable problem) and that the problem is NP-hard. Without this restriction, we show that the optimal assembly can be substantially smaller than the optimal context-free grammar, by a factor of Ω(√/n log n) even for binary strings of length n. Fortunately, we can bound this separation in model power by a quadratic function in the number of distinct glues or tiles allowed in the assembly, which is typically small in practice. © 2012 Springer Science+Business Media Dordrecht.
Date issued
2013
URI
https://hdl.handle.net/1721.1/134462
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Natural Computing
Publisher
Springer Nature America, Inc

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.