Show simple item record

dc.contributor.authorMichałek, Mateusz
dc.contributor.authorSturmfels, Bernd
dc.contributor.authorUhler, Caroline
dc.contributor.authorZwiernik, Piotr
dc.date.accessioned2021-10-27T20:06:01Z
dc.date.available2021-10-27T20:06:01Z
dc.date.issued2016
dc.identifier.urihttps://hdl.handle.net/1721.1/134655
dc.description.abstract© 2016 London Mathematical Society. Exponential varieties arise from exponential families in statistics. These real algebraic varieties have strong positivity and convexity properties, familiar from toric varieties and their moment maps. Among them are varieties of inverses of symmetric matrices satisfying linear constraints. This class includes Gaussian graphical models. We develop a general theory of exponential varieties. These are derived from hyperbolic polynomials and their integral representations. We compare the multidegrees and ML degrees of the gradient map for hyperbolic polynomials.
dc.language.isoen
dc.publisherWiley
dc.relation.isversionof10.1112/PLMS/PDV066
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleExponential varieties
dc.typeArticle
dc.identifier.citationMichalek, Mateusz, et al. "Exponential Varieties." Proceedings of the London Mathematical Society 112 (2016): 27-56.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalProceedings of the London Mathematical Society
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2019-07-09T17:11:57Z
dspace.orderedauthorsMichałek, M; Sturmfels, B; Uhler, C; Zwiernik, P
dspace.date.submission2019-07-09T17:11:58Z
mit.journal.volume112
mit.journal.issue1
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record