MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid electrolyte enables safe and practical 5 V LiNi 0.5 Mn 1.5 O 4 batteries

Author(s)
Chandra Rath, Purna; Wu, Chia-Jung; Patra, Jagabandhu; Li, Ju; Lee, Tai-Chou; Yeh, Ting-Ju; Chang, Jeng Kuei; ... Show more Show less
Thumbnail
DownloadAccepted version (1.250Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019 The Royal Society of Chemistry. Bis(trifluoromethylsulfonyl)imide (TFSI)-based ionic liquid (IL) has high thermal and electrochemical stability, but it is not an ideal battery electrolyte due to the poor rate capability of cells that use it, problematic anode compatibility, and high cost. The incorporation of a carbonate solvent could mitigate these problems, but it would also lead to serious Al current collector corrosion at high potential. This long-existing problem is overcome in this study by modulating the LiTFSI concentration and IL/carbonate ratio in the hybrid electrolyte. The Al corrosion and electrolyte decomposition side reactions at 5 V (vs. Li+/Li) can be suppressed in 3 M LiTFSI 25%-IL electrolyte, in which good performance of a high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode is achieved. Capacities of 140 and 88 mA h g-1 were measured at 0.1 and 2C, respectively (vs. 25 mA h g-1 at 2C for a plain LiTFSI/PMP-TFSI IL electrolyte). After 300 charge-discharge cycles, 90% of the initial LNMO capacity was retained. This electrolyte also shows low flammability and great wettability toward a polyethylene separator. Moreover, this electrolyte allows elevatederature storage and operation of LNMO cells at 55 °C, which is not possible with the conventional carbonate electrolyte. Good compatibility of the electrolyte with a graphite anode is also demonstrated. The proposed electrolyte design concept has great potential for next-generation 5 V Li-ion batteries.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134789
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Materials Chemistry A
Publisher
Royal Society of Chemistry (RSC)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.