Show simple item record

dc.contributor.authorHou, Lei
dc.contributor.authorKellis, Manolis
dc.contributor.authorLiu, Yaping
dc.contributor.authorPark, YongJin
dc.contributor.authorRinaldi, Nicola
dc.date.accessioned2022-07-06T20:41:26Z
dc.date.available2021-10-27T20:10:23Z
dc.date.available2022-07-06T20:41:26Z
dc.date.issued2018-12-01
dc.identifier.urihttps://hdl.handle.net/1721.1/135026.2
dc.description.abstract© 2018 The Author(s). Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects of gene expression variation on human phenotypes. Replication in an independent cohort is shown. Most of the associations are tissue specific, suggesting context specificity of the trait etiology. Colocalized significant associations in unexpected tissues underscore the need for an agnostic scanning of multiple contexts to improve our ability to detect causal regulatory mechanisms. Monogenic disease genes are enriched among significant associations for related traits, suggesting that smaller alterations of these genes may cause a spectrum of milder phenotypes.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-018-03621-1en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleExploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statisticsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-06-07T15:46:24Z
dspace.orderedauthorsBarbeira, AN; Dickinson, SP; Bonazzola, R; Zheng, J; Wheeler, HE; Torres, JM; Torstenson, ES; Shah, KP; Garcia, T; Edwards, TL; Stahl, EA; Huckins, LM; Aguet, F; Ardlie, KG; Cummings, BB; Gelfand, ET; Getz, G; Hadley, K; Handsaker, RE; Huang, KH; Kashin, S; Karczewski, KJ; Lek, M; Li, X; MacArthur, DG; Nedzel, JL; Nguyen, DT; Noble, MS; Segrè, AV; Trowbridge, CA; Tukiainen, T; Abell, NS; Balliu, B; Barshir, R; Basha, O; Battle, A; Bogu, GK; Brown, A; Brown, CD; Castel, SE; Chen, LS; Chiang, C; Conrad, DF; Damani, FN; Davis, JR; Delaneau, O; Dermitzakis, ET; Engelhardt, BE; Eskin, E; Ferreira, PG; Frésard, L; Gamazon, ER; Garrido-Martín, D; Gewirtz, ADH; Gliner, G; Gloudemans, MJ; Guigo, R; Hall, IM; Han, B; He, Y; Hormozdiari, F; Howald, C; Jo, B; Kang, EY; Kim, Y; Kim-Hellmuth, S; Lappalainen, T; Li, G; Li, X; Liu, B; Mangul, S; McCarthy, MI; McDowell, IC; Mohammadi, P; Monlong, J; Montgomery, SB; Muñoz-Aguirre, M; Ndungu, AW; Nobel, AB; Oliva, M; Ongen, H; Palowitch, JJ; Panousis, N; Papasaikas, P; Park, YS; Parsana, P; Payne, AJ; Peterson, CB; Quan, J; Reverter, F; Sabatti, C; Saha, A; Sammeth, M; Scott, AJ; Shabalin, AA; Sodaei, R; Stephens, M; Stranger, BE; Strober, BJ; Sul, JHen_US
dspace.date.submission2019-06-07T15:46:25Z
mit.journal.volume9en_US
mit.journal.issue1en_US
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version