Logarithmic inequalities under a symmetric polynomial dominance order
Author(s)
Sra, Suvrit
DownloadPublished version (158.3Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
© 2018 American Mathematical Society. We consider a dominance order on positive vectors induced by the elementary symmetric polynomials. Under this dominance order we provide conditions that yield simple proofs of several monotonicity questions. Notably, our approach yields a quick (4 line) proof of the so-called “sum-of-squared-logarithms” inequality conjectured in (Bîrsan, Neff, and Lankeit, J. Inequalities and Applications (2013); P. Neff, Y. Nakatsukasa, and A. Fischle; SIMAX, 35, 2014). This inequality has been the subject of several recent articles, and only recently it received a full proof, albeit via a more elaborate complex-analytic approach. We provide an elementary proof, which, moreover, extends to yield simple proofs of both old and new inequalities for Rényi entropy, subentropy, and quantum Rényi entropy.
Date issued
2018Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Proceedings of the American Mathematical Society
Publisher
American Mathematical Society (AMS)