Show simple item record

dc.contributor.authorMcFarland, James M.
dc.contributor.authorPaolella, Brenton R.
dc.contributor.authorWarren, Allison
dc.contributor.authorGeiger-Schuller, Kathryn
dc.contributor.authorShibue, Tsukasa
dc.contributor.authorRothberg, Michael
dc.contributor.authorKuksenko, Olena
dc.contributor.authorColgan, William N.
dc.contributor.authorJones, Andrew
dc.contributor.authorChambers, Emily
dc.contributor.authorDionne, Danielle
dc.contributor.authorBender, Samantha
dc.contributor.authorWolpin, Brian M.
dc.contributor.authorGhandi, Mahmoud
dc.contributor.authorTirosh, Itay
dc.contributor.authorRozenblatt-Rosen, Orit
dc.contributor.authorRoth, Jennifer A.
dc.contributor.authorGolub, Todd R.
dc.contributor.authorRegev, Aviv
dc.contributor.authorAguirre, Andrew J.
dc.contributor.authorVazquez, Francisca
dc.contributor.authorTsherniak, Aviad
dc.date.accessioned2022-02-10T20:33:34Z
dc.date.available2021-10-27T20:23:20Z
dc.date.available2022-02-10T20:33:34Z
dc.date.issued2020-08
dc.date.submitted2020-02
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/135406.2
dc.description.abstract© 2020, The Author(s). Assays to study cancer cell responses to pharmacologic or genetic perturbations are typically restricted to using simple phenotypic readouts such as proliferation rate. Information-rich assays, such as gene-expression profiling, have generally not permitted efficient profiling of a given perturbation across multiple cellular contexts. Here, we develop MIX-Seq, a method for multiplexed transcriptional profiling of post-perturbation responses across a mixture of samples with single-cell resolution, using SNP-based computational demultiplexing of single-cell RNA-sequencing data. We show that MIX-Seq can be used to profile responses to chemical or genetic perturbations across pools of 100 or more cancer cell lines. We combine it with Cell Hashing to further multiplex additional experimental conditions, such as post-treatment time points or drug doses. Analyzing the high-content readout of scRNA-seq reveals both shared and context-specific transcriptional response components that can identify drug mechanism of action and enable prediction of long-term cell viability from short-term transcriptional responses to treatment.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-020-17440-wen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleMultiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of actionen_US
dc.typeArticleen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MIT
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-07-22T16:24:23Z
dspace.orderedauthorsMcFarland, JM; Paolella, BR; Warren, A; Geiger-Schuller, K; Shibue, T; Rothberg, M; Kuksenko, O; Colgan, WN; Jones, A; Chambers, E; Dionne, D; Bender, S; Wolpin, BM; Ghandi, M; Tirosh, I; Rozenblatt-Rosen, O; Roth, JA; Golub, TR; Regev, A; Aguirre, AJ; Vazquez, F; Tsherniak, Aen_US
dspace.date.submission2021-07-22T16:24:27Z
mit.journal.volume11en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version