MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrahigh Superelastic Damping at the nano-scale: a robust phenomenon to improve smart MEMS devices

Author(s)
Gómez-Cortés, Jose F; Nó, María L; Ruíz-Larrea, Isabel; Breczewski, Tomasz; López-Echarri, Angel; Schuh, Christopher A; San Juan, Jose M; ... Show more Show less
Thumbnail
DownloadPublished version (4.253Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Acta Materialia Inc. Micro and nano pillars of Copper-based shape memory alloys (SMAs) with feature sizes between about 2 μm and 250 nm are known to exhibit ultra-high mechanical damping due to the nucleation and motion of stress-induced martensite interfaces during superelastic straining. While this behavior could be extremely useful to protect micro electro-mechanical systems (MEMS) against vibrations in aggressive environments, a fundamental question must yet be answered in order to envisage further applications, namely, whether this damping is reproducible and stable over long times and many cycles, or whether the damping is a signal of accumulating damage that could compromise long-term usage. In the present paper this crucial question is answered; we show that micropillar arrays of Cu-Al-Ni SMAs exhibit a completely recoverable and reproducible superelastic response, with an ultra-high damping loss factor η > 0.1, or even higher for sub-micrometer pillars, η > 0.2, even after thousands of cycles (>5000) and after long times spanning more than four years. Furthermore, the first high-frequency tests on such nanoscale SMAs show that their superelastic response is very fast and relevant to ultra-high damping even at frequencies as high as 1000 Hz. This paves the way for the design of micro/nano dampers, based on SMAs, to improve the reliability of MEMS in noisy environments.
Date issued
2019
URI
https://hdl.handle.net/1721.1/135896
Journal
Acta Materialia
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.