MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Truly Subcubic Algorithms for Language Edit Distance and RNA Folding via Fast Bounded-Difference Min-Plus Product

Author(s)
Bringmann, Karl; Grandoni, Fabrizio; Saha, Barna; Williams, Virginia Vassilevska
Thumbnail
DownloadPublished version (392.8Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 Society for Industrial and Applied Mathematics It is a major open problem whether the (min, +)-product of two n × n matrices has a truly subcubic (i.e., O(n3−ε) for ε > 0) time algorithm; in particular, since it is equivalent to the famous all-pairs-shortest-paths problem (APSP) in n-vertex graphs. Some restrictions of the (min, +)-product to special types of matrices are known to admit truly subcubic algorithms, each giving rise to a special case of APSP that can be solved faster. In this paper we consider a new, different, and powerful restriction in which all matrix entries are integers and one matrix can be arbitrary, as long as the other matrix has “bounded differences” in either its columns or rows, i.e., any two consecutive entries differ by only a small amount. We obtain the first truly subcubic algorithm for this bounded-difference (min, +)-product (answering an open problem of Chan and Lewenstein). Our new algorithm, combined with a strengthening of an approach of Valiant for solving context-free grammar parsing with matrix multiplication, yields the first truly subcubic algorithms for the following problems: language edit distance (a major problem in the parsing community), RNA folding (a major problem in bioinformatics), and optimum stack generation (answering an open problem of Tarjan).
Date issued
2019
URI
https://hdl.handle.net/1721.1/136191
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
SIAM Journal on Computing
Publisher
Society for Industrial & Applied Mathematics (SIAM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.