MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Avoidance of Convex and Concave Obstacles With Convergence Ensured Through Contraction

Author(s)
Huber, Lukas; Billard, Aude; Slotine, Jean-Jacques
Thumbnail
DownloadAccepted version (4.367Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2016 IEEE. This letter presents a closed-form approach to obstacle avoidance for multiple moving convex and star-shaped concave obstacles. The method takes inspiration in harmonic-potential fields. It inherits the convergence properties of harmonic potentials. We prove impenetrability of the obstacles hull and asymptotic stability at a final goal location, using contraction theory. We validate the approach in a simulated co-worker industrial environment, with one KUKA arm engaged in a pick and place grocery task, avoiding in real-time humans moving in its vicinity and in simulation to drive wheel-chair robot in the presence of moving obstacles.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136208
Department
Massachusetts Institute of Technology. Nonlinear Systems Laboratory
Journal
IEEE Robotics and Automation Letters
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.