Influence of Transonic Flutter on the Conceptual Design of Next-Generation Transport Aircraft
Author(s)
Opgenoord, Max MJ; Drela, Mark; Willcox, Karen E
DownloadAccepted version (854.5Kb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
© 2019 by Max Opgenoord, Mark Drela, and Karen Willcox. Transonic aeroelasticity is an important consideration in the conceptual design of next-generation aircraft configurations. This paper develops a low-order physics-based flutter model for swept high-aspect-ratio wings. The approach builds upon a previously developed flutter model that uses the flowfield's lowest moments of vorticity and volume-source density perturbations as its states. The contribution of this paper is a new formulation of the model for swept high-aspect-ratio wings. The aerodynamic model is calibrated using offline two-dimensional unsteady transonic computational-fluid-dynamics simulations. Combining that aerodynamic model with a beam model results in a low-dimensional overall aeroelastic system. The low computational cost of the model permits its incorporation in a conceptual design tool for next-generation transport aircraft. The model's capabilities are demonstrated by finding transonic flutter boundaries for different clamped-wing configurations and investigating the influence of transonic flutter on the planform design of next-generation transport aircraft.
Date issued
2019Department
Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsJournal
AIAA Journal
Publisher
American Institute of Aeronautics and Astronautics (AIAA)