Deforestation Due to Artisanal and Small-Scale Gold Mining Exacerbates Soil and Mercury Mobilization in Madre de Dios, Peru
Author(s)
Diringer, Sarah E; Berky, Axel J; Marani, Marco; Ortiz, Ernesto J; Karatum, Osman; Plata, Desiree L.; Pan, William K; Hsu-Kim, Heileen; ... Show more Show less
DownloadAccepted version (1.577Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
© 2019 American Chemical Society. Artisanal and small-scale gold mining (ASGM) is a significant contributor of mercury (Hg) contamination and deforestation across the globe. In the Colorado River watershed in Madre de Dios, Peru, mining and deforestation have increased exponentially since the 1980s, resulting in major socioeconomic shifts in the region and two national state of emergency (2016 and 2019) in response to concerns for wide-scale mercury poisoning by these activities. This research employed a watershed-scale soil particle detachment model and environmental field sampling to estimate the role of land cover change and soil erosion on river transport of Hg in a heavily ASGM-impacted watershed. The model estimated that observed decreases in forest cover increased soil mobilization by a factor of two in the Colorado River watershed during the 18 year period and by 4-fold in the Puquiri subwatershed (the area of most concentrated ASGM activity). If deforestation continues to increase at its current exponential rate through 2030, the annual mobilization of soil and Hg may increase by an additional 20-25% relative to 2014 levels. While, the estimated total mass of Hg transported by rivers is substantially less than the estimated tons of Hg used with ASGM in Peru, this research shows that deforestation associated with ASGM is an additional mechanism for mobilizing naturally occurring and anthropogenic Hg from terrestrial landscapes to aquatic environments in the region, potentially leading to bioaccumulation in fish and exposure to communities downstream.
Date issued
2019Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Environmental Science and Technology
Publisher
American Chemical Society (ACS)