Hydrophilic and Hydrophobic Effects on the Structure and Themodynamic Properties of Confined Water: Water in Solutions
Author(s)
Mallamace, Francesco; Mallamace, Domenico; Chen, Sow-Hsin; Lanzafame, Paola; Papanikolaou, Georgia
Downloadijms-22-07547-v2.pdf (1.133Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
NMR spectroscopy is used in the temperature range 180–350 K to study the local order and transport properties of pure liquid water (bulk and confined) and its solutions with glycerol and methanol at different molar fractions. We focused our interest on the hydrophobic effects (HE), i.e., the competition between hydrophilic and hydrophobic interactions. Nowadays, compared to hydrophilicity, little is known about hydrophobicity. Therefore, the main purpose of this study is to gain new information about hydrophobicity. As the liquid water properties are dominated by polymorphism (two coexisting liquid phases of high and low density) due to hydrogen bond interactions (HB), creating (especially in the supercooled regime) the tetrahedral networking, we focused our interest to the HE of these structures. We measured the relaxation times (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula>) and the self-diffusion (D<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>S</mi></msub></semantics></math></inline-formula>). From these times, we took advantage of the NMR property to follow the behaviors of each molecular component (the hydrophilic and hydrophobic groups) separately. In contrast, D<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>S</mi></msub></semantics></math></inline-formula> is studied in terms of the Adam–Gibbs model by obtaining the configurational entropy (S<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>c</mi><mi>o</mi><mi>n</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) and the specific heat contributions (C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>P</mi><mo>,</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>). We find that, for the HE, all of the studied quantities behave differently. For water–glycerol, the HB interaction is dominant for all conditions; water–methanol, two different T-regions above and below 265 K are observable, dominated by hydrophobicity and hydrophilicity, respectively. Below this temperature, where the LDL phase and the HB network develops and grows, with the times and C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>P</mi><mo>,</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> change behaviors leading to maxima and minima. Above it, the HB becomes weak and less stable, the HDL dominates, and hydrophobicity determines the solution.
Date issued
2021-07Department
Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringJournal
International Journal of Molecular Sciences
Publisher
Multidisciplinary Digital Publishing Institute
Citation
International Journal of Molecular Sciences 22 (14): 7547 (2021)
Version: Final published version
ISSN
1422-0067