| dc.contributor.author | Zhuang, Ziquan | |
| dc.date.accessioned | 2022-01-25T19:06:59Z | |
| dc.date.available | 2021-11-01T14:33:48Z | |
| dc.date.available | 2022-01-25T19:06:59Z | |
| dc.date.issued | 2021-04 | |
| dc.date.submitted | 2020-05 | |
| dc.identifier.issn | 1432-1297 | |
| dc.identifier.issn | 0020-9910 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/136852.2 | |
| dc.description.abstract | Abstract
We give an algebraic proof of the equivalence of equivariant K-semistability (resp. equivariant K-polystability) with geometric K-semistability (resp. geometric K-polystability). Along the way we also prove the existence and uniqueness of minimal optimal destabilizing centers on K-unstable log Fano pairs. | en_US |
| dc.publisher | Springer Berlin Heidelberg | en_US |
| dc.relation.isversionof | https://doi.org/10.1007/s00222-021-01046-0 | en_US |
| dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
| dc.source | Springer Berlin Heidelberg | en_US |
| dc.title | Optimal destabilizing centers and equivariant K-stability | en_US |
| dc.type | Article | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
| dc.relation.journal | Inventiones mathematicae | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2021-09-08T03:23:26Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature | |
| dspace.embargo.terms | Y | |
| dspace.date.submission | 2021-09-08T03:23:26Z | |
| mit.journal.volume | 226 | en_US |
| mit.license | PUBLISHER_POLICY | |
| mit.metadata.status | Authority Work Needed | en_US |